题目内容

【题目】如图,在ABC中,∠ACB=90°,CAD=30°,AC=BC=AD,CECD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,BE=BC;AD=BE;CD=BD.其中正确的是 (  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

【答案】D

【解析】

①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③由②的结论,等量代换即可;④过DDM⊥ACM,过DDN⊥BCN.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=DM=AC=BC,从而得出CN=BN.然后即可得出结论.

∵∠CAD=30°,AC=AD,

∴∠ACD=∠ADC=75°,

∵CE⊥CD,

∴∠ECA=165°,①正确;

ACB=DCE=90°,

∠ACD=∠BCE,

在△ACD和△BCE中,

∴△ACD≌△BCE,

∴BE=AD,③正确;

∵BC=AD,

∴BE=BC,②正确;

DDM⊥ACM,过DDN⊥BCN.

∵∠CAD=30°,且DM=AC,

∵AC=AD,∠CAD=30°,

∴∠ACD=75°,

∴∠NCD=90°-∠ACD=15°,∠MDC=∠DMC-∠ACD=15°,

在△CMD和△CND中,

∴△CMD≌△CND,

∴CN=DM=AC=BC,

∴CN=BN.

∵DN⊥BC,

∴BD=CD.

∴④正确,

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网