题目内容

在平面直角坐标系xOy中,将抛物线y=2x2沿y轴向上平移1个单位,再沿x轴向右平移两个单位,平移后抛物线的顶点坐标记作A,直线x=3与平移后的抛物线相交于B,与直线OA相交于C.
(1)抛物线解析式;
(2)求△ABC面积;
(3)点P在平移后抛物线的对称轴上,如果△ABP与△ABC相似,求所有满足条件的P点坐标.
(1)将抛物线y=2x2沿y轴向上平移1个单位,则y=2x2+1,
再沿x轴向右平移两个单位后y=2(x-2)2+1,
所以平移后抛物线的解析式为y=2(x-2)2+1;

(2)∵平移后抛物线的解析式为y=2(x-2)2+1.
∴A点坐标为(2,1),
设直线OA解析式为y=kx,将A(2,1)代入
得k=
1
2

∴直线OA解析式为y=
1
2
x,
将x=3代入y=
1
2
x得;y=
3
2

∴C点坐标为(3,
3
2
),
将x=3代入y=2(x-2)2+1得y=3,
∴B点坐标为(3,3).
∴S△ABC
3
4


(3)∵PABC,
∴∠PAB=∠ABC
①当∠PBA=∠BAC时,PBAC,
∴四边形PACB是平行四边形,
∴PA=BC=
3
2

∴P1(2,
5
2
),
②当∠APB=∠BAC时,
AP
AB
=
AB
BC

∴AP=
AB2
BC

又∵AB=
(3-2)2+(3-1)2
=
5

∴AP=
10
3

∴P2(2,1+
10
3
)即P2(2,
13
3
).
综上所述满足条件的P点有(2,
5
2
),(2,
13
3
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网