题目内容
【题目】如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.②③④D.①②③④
【答案】C
【解析】
先由抛物线解析式得到a=-1<0,利用抛物线的对称轴得到b>0,易得c>0,于是可对①进行判断;由顶点D在y轴右侧的直线l:y=4上可得b的范围,从而可判断②是否正确;由a=-1及顶点D在y轴右侧的直线l:y=4上,可得抛物线与x轴两交点之间的距离AB为定值,即可求得AB的长度及S△ABD的大小.
解: ∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,
∴,
∵,
则b>0,
函数图像交y轴于C点,则c>0,
∴bc>0,即①错误;
又∵顶点坐标为( ),即()
∴=4,即
又∵ =,即
∴AB=4即③正确;
又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧
∴<2,即b<4
∴0<b<4,故②正确;
∵顶点的纵坐标为4,即△ABD的高为4
∴△ABD的面积= ,故④正确;
故答案为:C.
练习册系列答案
相关题目