题目内容

如图所示,已知正比例函数y=kx的图象与反比例函数y=
15-k
x
的图象相交于A、B两点,且A点横坐标为2.
(1)求A、B两点坐标;
(2)在x轴上取关于原点对称的P、Q两点,P点在Q点右边,试问四边形AQBP一定是一个什么形状的四边形?并说明理由.
(1)将x=2分别代入y=kx及y=
15-k
x

得:2k=
15-k
2

解得k=3;
解方程组
y=3x
y=
12
x

解得:
x1=2
y1=6
x2=-2
y2=-6

∴A(2,6),B(-2,-6);

(2)四边形AQBP是平行四边形.理由如下:
∵点P、点Q关于原点对称,
∴OP=OQ,
又∵反比例函数的图象关于原点对称,
∴OA=OB,
∴四边形AQBP一定是平行四边形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网