题目内容
如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:
①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.
其中正确的有( )
①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.
其中正确的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=-
>-1,且c>0.
①由图可得:当x=-2时,y<0,即4a-2b+c<0,故①正确;
②已知x=-
>-1,且a<0,所以2a-b<0,故②正确;
③已知抛物线经过(-1,2),即a-b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a-2b+c<0(3);
联立(1)(2),得:a+c<1;联立(1)(3)得:2a-c<-4;
故3a<-3,即a<-1;所以③正确;
④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:
>2,
由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①②③④.
故选D.
b |
2a |
①由图可得:当x=-2时,y<0,即4a-2b+c<0,故①正确;
②已知x=-
b |
2a |
③已知抛物线经过(-1,2),即a-b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a-2b+c<0(3);
联立(1)(2),得:a+c<1;联立(1)(3)得:2a-c<-4;
故3a<-3,即a<-1;所以③正确;
④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:
4ac-b2 |
4a |
由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①②③④.
故选D.
练习册系列答案
相关题目