题目内容

【题目】如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF= 米,则这段弯路的长度为(
A.200π米
B.100π米
C.400π米
D.300π米

【答案】A
【解析】解:设这段弯路的半径为R米 OF= 米,
∵OE⊥CD
∴CF= CD= ×600=300
根据勾股定理,得OC2=CF2+OF2
即R2=3002+(300 2
解之,得R=600,
∴sin∠COF= =
∴∠COF=30°,
∴这段弯路的长度为: =200π(m).
故选:A.

【考点精析】本题主要考查了勾股定理的概念和垂径定理的推论的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网