题目内容
【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据: ≈1.414, ≈1.732)
【答案】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.
则DE=BF=CH=10m,
在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,
∴DF=AF=70m.
在直角△CDE中,∵DE=10m,∠DCE=30°,
∴CE= = =10 (m),
∴BC=BE﹣CE=70﹣10 ≈70﹣17.32≈52.7(m).
答:障碍物B,C两点间的距离约为52.7m.
【解析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.
练习册系列答案
相关题目