题目内容

【题目】抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE= S△ACD , 求点E的坐标;

(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.

【答案】
(1)

解:当m=﹣3时,B(﹣3,0),

把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:

,解得

∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;

对称轴是:直线x=﹣1


(2)

解:如图1,

设E(m,m2+2m﹣3),

由题意得:AD=1+1=2,OC=3,

S△ACE= S△ACD= × ADOC= ×2×3=10,

设直线AE的解析式为:y=kx+b,

把A(1,0)和E(m,m2+2m﹣3)代入得,

解得:

∴直线AE的解析式为:y=(m+3)x﹣m﹣3,

∴F(0,﹣m﹣3),

∵C(0,﹣3),

∴FC=﹣m﹣3+3=﹣m,

∴S△ACE= FC(1﹣m)=10,

﹣m(1﹣m)=20,

m2﹣m﹣20=0,

(m+4)(m﹣5)=0,

m1=﹣4,m2=5(舍),

∴E(﹣4,5)


(3)

解:如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,

∴∠BPF=90°,

∴∠FPG+∠OPB=90°,

∵∠OPB+∠OBP=90°,

∴∠OBP=∠FPG,

连接EP,则EP⊥OG,

∵BE=EF,

∴EP是梯形的中位线,

∴OP=PG=2,

∵FG=1,

tan∠FPG=tan∠OBP=

=

∴m=﹣4,

∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;

如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,

则∠OBP=∠OPB=∠FPG,

∴OB=OP,

∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,

∴FG=PG=1,

∴OB=OP=3,

∴m=3,

综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.


【解析】(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网