题目内容
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O的半径.
【答案】(1)证明见解析;(2)r=.
【解析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.
详(1)证明:连接OD,
∵OB=OD,
∴∠3=∠B,
∵∠B=∠1,
∴∠1=∠3,
在Rt△ACD中,∠1+∠2=90°,
∴∠4=180°-(∠2+∠3)=90°,
∴OD⊥AD,
则AD为圆O的切线;
(2)设圆O的半径为r,
在Rt△ABC中,AC=BCtanB=4,
根据勾股定理得:AB=,
∴OA=4-r,
在Rt△ACD中,tan∠1=tanB=,
∴CD=ACtan∠1=2,
根据勾股定理得:AD2=AC2+CD2=16+4=20,
在Rt△ADO中,OA2=OD2+AD2,即(4-r)2=r2+20,
解得:r=.
练习册系列答案
相关题目