题目内容

【题目】如图,AM∥BN,∠MAB和∠NBA的角平分线相交于点P,过点P作直线EF分别交AM、BNF、E.

(1)求证:AB=AF+BE;

(2)EF绕点P旋转,FMA的延长线上滑动,如图,请你测量,猜想AB、AF、BE之间的关系,写出这个关系式,并加以证明.

【答案】(1)证明见解析;(2)见解析.

【解析】

(1)延长APBEQ,求出AB=BQ,根据BP平分∠ABE求出AP=PQ,推出AF=EQ,即可得出答案;

(2)①求出AB=BQ,根据BP平分∠ABE求出AP=PQ,推出AF=EQ,即可得出答案;

延长APBEQ,同①可得AB=BQ,再求出AF=EQ,即可得出答案.

(1)延长APBEQ,

∵AP平分∠MAB,

∴∠MAP=∠BAP,

∵AM∥BN,

∴∠MAP=∠AQB,

∴∠BAP=∠AQB,

∴AB=BQ,

∵BP平分∠ABE,

∴AP=PQ,

∵AM∥BN,

=1,

∴AF=EQ,

∴AB=AF+BE;

(2)①成立,

如图2,

延长APBEQ,

∵AP平分∠MAB,

∴∠MAP=∠BAP,

∵AM∥BN,

∴∠MAP=∠AQB,

∴∠BAP=∠AQB,

∴AB=BQ,

∵BP平分∠ABE,

∴AP=PQ,

∵AM∥BN,

=1,

∴AF=EQ,

∴AB=AF+BE;

不同,猜想:AF+AB=BE,

证明:延长APBEQ,

∵AP平分∠MAB,

∴∠MAP=∠BAP,

∵AM∥BN,

∴∠MAP=∠AQB,

∴∠BAP=∠AQB,

∴AB=BQ,

∵BP平分∠ABE,

∴AP=PQ,

∵AM∥BN,

=1,

∴AF=EQ,

∴AF+AB=BE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网