题目内容
【题目】(本题9分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;
(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;
(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
【答案】(1)60;90°;统计图详见解析;(2)300;(3).
【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;
(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;
(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率.
试题解析:(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),
“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,
补全条形统计图如图所示:
(2)根据题意得:900×=300(人),
则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;
(3)列表如下:
剪 石 布
剪 (剪,剪) (石,剪) (布,剪)
石 (剪,石) (石,石) (布,石)
布 (剪,布) (石,布) (布,布)
所有等可能的情况有9种,其中两人打平的情况有3种,
则P==.