题目内容
【题目】“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是( ).
A. B.
C. D.
【答案】A
【解析】试题分析:依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.
解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.
函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).
方程1﹣(x﹣a)(x﹣b)=0
转化为(x﹣a)(x﹣b)=1,
方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.
由m<n,可知对称轴左侧交点横坐标为m,右侧为n.
由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.
综上所述,可知m<a<b<n.
故选:A.
练习册系列答案
相关题目