题目内容
大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?
(1)设y=kx+b
由题意得:
,
解之得:k=-10;b=300.
∴y=-10x+300.
(2)由上知超市每星期的利润:W=(x-8)•y=(x-8)(-10x+300)
=-10(x-8)(x-30)=-10(x2-38x+240)
=-10(x-19)2+1210
答:当x=19即定价19元/个时超市可获得的利润最高.
最高利润为1210元.
由题意得:
|
解之得:k=-10;b=300.
∴y=-10x+300.
(2)由上知超市每星期的利润:W=(x-8)•y=(x-8)(-10x+300)
=-10(x-8)(x-30)=-10(x2-38x+240)
=-10(x-19)2+1210
答:当x=19即定价19元/个时超市可获得的利润最高.
最高利润为1210元.
练习册系列答案
相关题目