题目内容
【题目】如图,在△BDE中,∠BDE=90°,BD=4,点D的坐标是(6,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为__________.
【答案】
【解析】
根据旋转的性质,AB与BD的垂直平分线的交点即为旋转中心P,连接PD,过P作PF⊥x轴于F,再根据点C在BD上确定出∠PDB=45°并求出PD的长,然后求出∠PDO=60°,根据直角三角形两锐角互余求出∠DPF=30°,然后解直角三角形求出点P的坐标.
如图,AB与BD的垂直平分线的交点即为旋转中心P,连接PD,过P作PF⊥x轴于F,
∵点C在BD上,
∴点P到AB、BD的距离相等,都是BD,即,
∴∠PDB=45°,,
∵∠BDO=15°,
∴∠PDO=45°+15°=60°,
∴∠DPF=30°,
∴DF=PD=,,
∵点D的坐标是(6,0),
∴OF=OD﹣DF=,
∴旋转中心的坐标为,
故答案为:.
练习册系列答案
相关题目