题目内容
【题目】如图,将矩形ABCD沿EF折叠,使点B,D重合,已知AB=3,AD=4,则 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF= .
上面结论正确的有( )
A.1个
B.2个
C.3个
D.4个
【答案】C
【解析】解;如图作EM⊥BC于M.
∵四边形ABCD是矩形,四边形EFDG是由四边形ABEF翻折,
∴∠ADC=∠GDF=∠C=∠G=90°,DC=DG=AB=3,AD=BC=4
∴∠EDG=∠CDF,
在△DEG和△DFC中,
,
∴△DEG≌△DFC.故③正确,
∴DE=DF,故①正确,
设DF=FB=x,则CF=4﹣x,
在RT△DCF中,∵DF2=CD2+CF2 ,
∴x2=(4﹣x)2+32 ,
∴x= ,
∴DE=DF= ,
∵四边形AEMB是矩形,
∴AE=BM= ,ME=AB=3,
∴MF=BC﹣BM﹣CF=4﹣ ﹣(4﹣ )= ,
在RT△EFM中,EF= = .故④正确,
②错误.假设DF=EF,∵DE=DF,
∴EF=DE=DF,
∴△DEF是等边三角形,
∴∠DFE=60°,
∴∠BFE=∠DFE=∠DFC=60°,
这显然不可能,假设不成立,故②错误.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目
【题目】如图,在一次测量活动中,小丽站在离树底部E处5m的B处仰望树顶C,仰角为30°,已知小丽的眼睛离地面的距离AB为1.65m,那么这棵树大约有多高?(结果精确到0.1m,参考数据: ≈1.73)