题目内容
【题目】如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为( )
A. 115° B. 110° C. 105° D. 100°
【答案】D
【解析】
依据四边形BCDE的内角和,可得∠BCD+∠CBE=160°,再根据∠EBC和∠DCB的角平分线相交于点F,可得∠BCF+∠CBF=×160°=80°,进而得出△BCF中,∠F=180°-80°=100°.
解:∵BE⊥AD,
∴∠BED=90°,
又∵∠ADC=110°,
∴四边形BCDE中,∠BCD+∠CBE=360°-90°-110°=160°,
又∵∠EBC和∠DCB的角平分线相交于点F,
∴∠BCF+∠CBF=×160°=80°,
∴△BCF中,∠F=180°-80°=100°,
故选:D.
练习册系列答案
相关题目