题目内容
【题目】如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF的交点为点H,∠1+∠2=180°,∠3=∠C.
(1)求证:DE∥BC;
(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F应该满足的位置条件,在图2中画出符合条件的图形并说明理由.
(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小 .
【答案】(1)见解析;(2)见解析;(3) 90°+.
【解析】
(1)欲证明DE∥BC,只需推知∠DEC+∠C=180°即可,因此先根据外角性质,将∠1转化为∠3+∠4,再根据∠1与∠2互补,得到∠3+∠4+∠2=180°,最后将∠3=∠C代入即可得出结论;
(2)点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.
(3)根据平行线的性质和角平分线的定义,得出∠2的度数,再由三角形外角的性质即可得出结论.
(1)如图1.
∵∠1是△DEH的外角,∴∠1=∠3+∠4.
又∵∠1+∠2=180°,∴∠3+∠4+∠2=180°.
∵∠3=∠C,∴∠C+∠4+∠2=180°,即∠DEC+∠C=180°,∴DE∥BC;
(2)如图2.
∵∠1是△DEH的外角,∴∠1=∠3+∠DEF,①
∵∠BFE是△CEF的外角,∴∠BFH=∠2+∠C.
当∠1=∠BFH时,∠1=∠2+∠C,②
由①②得:∠3+∠DEF=∠2+∠C.
∵∠3=∠C,∴∠DEF=∠2,即EF平分∠DEC,∴点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.
(3)∵EF平分∠DEC,∴∠DEF=∠2.
∵DE∥BC,∴∠DEC+∠C=180°,∴2∠2+α=180°,∴∠2==.
∵∠BFH=∠2+∠C==.
【题目】某年级共有300名学生,为了解该年级学生在,两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.
收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:
项目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74
项目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75
整理、描述数据
项目的频数分布表
分组 | 划记 | 频数 |
— | 1 | |
2 | ||
2 | ||
| 8 | |
5 |
(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)
根据以上信息,回答下列问题:
(1)补全统计图、统计表;
(2)在此次测试中,成绩更好的项目是__________,理由是__________;
(3)假设该年级学生都参加此次测试,估计项目和项目成绩都是优秀的人数最多为________人.