题目内容
【题目】如图,在平面直角坐标系中,已知点A(0,6),B(b,0),且b<0,C,D分别是OA,AB的中点,△AOB的外角∠DBF的平分线BE与CD的延长线交于点E.
(1)求证:∠DAO=∠DOA;
(2)①若b=-8,求CE的长;
②若CE=+1,则b=________;
(3)是否存在这样的b值,使得四边形OBED为平行四边形?若存在,请求出此时四边形OBED对角线的交点坐标;若不存在,请说明理由.
【答案】(1)见解析;(2) ①9;②-2;(3)见解析.
【解析】(1)由C,D分别为AO,AB的中点,得到CD∥OB.又由OB⊥AO,得到CD垂直平分AO,由垂直平分线的性质即可得到结论.
(2)①由三角形中位线定理得到CD的长,由角平分线的定义和平行线的性质得到∠DEB=∠DBE,从而得到ED=BD=5,即可得到结论.
②由①得:EC=ED+DC=AB+BO,列方程求解即可得到结论.
(3)由四边形OBED是平行四边形,得OB=ED.由ED=BD=AB,得到AB=-2b,于是有(-b)2+62=(-2b)2,解方程得到b的值,进而得到AB的长.设平行四边形OBED的对角线交点为M,作MH⊥OB于点H,则BM=BD=AB.由OD=DB=OB,得到∠DBO=60°,∠BMH=30°,从而可得到BH,MH, OH,即可得到结论.
(1)∵C,D分别为AO,AB的中点,∴CD∥OB.
又∵OB⊥AO,∴CD⊥AC,∴CD垂直平分AO,∴AD=OD,∴∠DAO=∠DOA.
(2)①∵b=-8,∴OB=8,∴CD=OB=4.易得∠DEB=∠DBE,∴ED=BD=AB==5,∴CE=CD+ED=4+5=9.
②由①得:EC=ED+DC=AB+BO,∴,解得:b=-2.故答案为:-2.
(3)存在.理由如下:
如图,∵四边形OBED是平行四边形,∴OB=ED.
∵ED=BD=AB,∴OB=AB.
∵OB=-b,∴AB=-2b,∴(-b)2+62=(-2b)2,解得:b=,∴AB=.设平行四边形OBED的对角线交点为M,作MH⊥OB于点H,则BM=BD=AB=×=.
∵OD=AD,∴OD=DB=OB,∴∠DBO=60°,∴∠BMH=30°,∴BH=,MH=,∴OH==,∴M(,).