题目内容
【题目】如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是( )
A.a+b=1
B.b<2a
C.a﹣b=﹣1
D.ac<0
【答案】C
【解析】解:A不正确:由图象可知,直线AC:y=x+1,当x=1时,a+b+1>1+1,即a+b>1;
B不正确:由图象可知,﹣ <﹣1,解得b>2a;
C正确:由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),
又因为OC=OA=1,
所以C(0,1),A(﹣1,0),
把它代入y=ax2+bx+c,
即a(﹣1)2+b(﹣1)+1=0,
即a﹣b+1=0,
所以a﹣b=﹣1.
D不正确:由图象可知,抛物线开口向上,所以a>0;又因为c=1,所以ac>0.
故选:C.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
练习册系列答案
相关题目