题目内容

【题目】已知AB是⊙O的弦,PAB的中点,连接OA、OP,将△OPA绕点O旋转到△OQB.设⊙O的半径为1,AOQ=135°,则AQ的长为______

【答案】

【解析】

根据等腰三角形的性质得到OP⊥AB,∠AOP=∠BOP,根据旋转的性质得到∠BOQ=∠AOP,QB=AP,推出△AOB是等腰直角三角形,求得∠ABQ=90°,根据勾股定理即可得到结论.

解:如图,∵OA=OB,P为AB的中点,
∴OP⊥AB,∠AOP=∠BOP,
∵将△OPA绕点O旋转到△OQB,
∴∠BOQ=∠AOP,QB=AP,
∴∠AOP=∠BOP=∠BOQ,
∵∠AOQ=135°,
∴∠AOP=∠BOP=∠BOQ=45°,
∴△AOB是等腰直角三角形,
∴AP=OP=BQ=AB,∠OAP=∠ABO=∠OBQ=45°,
∴∠ABQ=90°,
∵OA=OB=1,
∴AB=
∴BQ=
∴AQ=
故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网