题目内容
【题目】在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏。
小明画出树形图如下:
小华列出表格如下:
第一次 第二次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为 ;
(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?
【答案】(1)放回
(2)(3,2)
(3)小明获胜的可能性大。理由见解析
【解析】
(1)根据树形图法的作法可知。
(2)根据排列顺序可知。
(3)游戏公平与否,比较概率即知。
解:(1)放回。
(2)(3,2)。
(3)理由如下:
∵根据小明的游戏规则,共有12种等可能结果,数字之和为奇数的有8种,
∴概率为:。
∵根据小华的游戏规则,共有16种等可能结果,数字之和为奇数的有8种,
∴概率为:。
∵,∴小明获胜的可能性大。
【题目】在平面直角坐标系xOy中,有“抛物线系”y=-(x-m)2+4m-3,顶点为点P,这些抛物线的形状与抛物线 y=-x2 相同,但顶点位置不同.
(1)填写下表,并说出:在m取不同数值时,点P位置的变化具有什么特征?
m的值 | … | -1 | 0 | 1 | 2 | … |
点P坐标 | … | … |
(2)若抛物线的对称轴是直线x=1,则可确定m的值.点M(p,q)为此抛物线上的一个动点,且﹣1<p<2,而直线y=kx-4(k≠0)始终经过点M.
①求此抛物线与x轴的交点坐标;
②求k的取值范围.
(3)若点Q在x轴上,点S(0,-1)在y轴上,点R在坐标平面内,且以点P,Q,R,S为顶点的四边形是正方形,试直接写出所有点Q的坐标.