题目内容

【题目】将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点 E,分别连接EB,EC.
(1)求证:EC平分∠AEB;
(2)求 的值.

【答案】
(1)证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,

∴∠BAC=∠ABC=45°,

∵∠AEC=∠ABC,∠BEC=∠BAC,

∴∠AEC=∠BEC,

即EC平分∠AEB


(2)解:如图,设AB与CE交于点M.

∵EC平分∠AEB,

=

在Rt△ABD中,∠ABD=90°,∠D=60°,

∴∠BAD=30°,

∵以AB为直径的圆经过点E,

∴∠AEB=90°,

∴tan∠BAE= =

∴AE= BE,

= =

作AF⊥CE于F,BG⊥CE于G.

在△AFM与△BGM中,

∵∠AFM=∠BGM=90°,∠AMF=∠BMG,

∴△AFM∽△BGM,

= =

= = =


【解析】(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根据圆周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代换得出∠AEC=∠BEC,即EC平分∠AEB;(2)设AB与CE交于点M.根据角平分线的性质得出 = .易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE= BE,那么 = = .作AF⊥CE于F,BG⊥CE于G.证明△AFM∽△BGM,根据相似三角形对应边成比例得出 = = ,进而求出 = = =
【考点精析】本题主要考查了圆周角定理和相似三角形的判定与性质的相关知识点,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网