题目内容

如图,△ABC内接于⊙O,CA=CB,CDAB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.
(1)CD与⊙O相切.理由如下:
如图,连接OC,
∵CA=CB,
AC
=
CB

∴OC⊥AB,
∵CDAB,
∴OC⊥CD,
∵OC是半径,
∴CD与⊙O相切.
(2)∵CA=CB,∠ACB=120°,
∴∠ABC=30°,
∴∠DOC=60°
∴∠D=30°,
∵OA=OC=2,
∴D0=4,
∴CD=
DO2-OC2
=2
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网