题目内容
【题目】为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:
项目 | 单价(元/棵) | 成活率 |
A | 100 | 98% |
B | 60 | 90% |
(1)求y与x之间的函数关系式;
(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?
【答案】
(1)解:y=100x+60(60﹣x)=40x+3600
100x+60(60﹣x)≤5200,
解得x≤40,
(∴0≤x≤40,且x为整数)
(2)解:98%x+90%(60﹣x)≥95%×60,
解得: ,
又∵x≤40,x是整数∴x=38、39、40.
所以有三种购树苗方案:①购A种树苗38棵、B种树苗22棵,所用资金38×100+22×60=5120元;②购A种树苗39棵、B种树苗21棵,所用资金39×100+21×60=5160元;③购A种树苗40棵、B种树苗20棵,所用资金为40×100+20×60=5200元
【解析】(1)总资金y=A树苗所需要的资金+B树苗所需要的资金;(2)关系式为:A种树木的成活数量+B种树木的成活数量≥树苗总数×95%,结合(1)中得到的自变量取值即可得到相应的选购方案及所用资金.
练习册系列答案
相关题目