题目内容
【题目】如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
【1】求证:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度数.
【答案】
【1】见解析
【2】100°
【解析】⑴利用SAS求证△ABE≌△CDA
⑵利用△ABE≌△CDA和平行线的性质以及等腰三角形的性质求解
⑴证明:在梯形ABCD中,∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA.
∴∠ABE=∠CDA.
在△ABE和△CDA中,
∴△ABE≌△CDA.
⑵解:由⑴得:∠AEB=∠CAD,AE=AC.
∴∠AEB=∠ACE.
]∵∠DAC=40°∴∠AEB=∠ACE=40°.
∴∠EAC=180°-40°-40°=100°.
【题目】为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:
项目 | 单价(元/棵) | 成活率 |
A | 100 | 98% |
B | 60 | 90% |
(1)求y与x之间的函数关系式;
(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?
【题目】为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况单位:元,并对销售金额进行分组,整理成如下统计表:
28,8,18,63,15,30,70,42,36,47,
25,58,64,58,55,41,58,65,72,30
销售金额x | ||||
划记 | ______ | ______ | ||
频数 | 3 | 5 | ______ | ______ |
请将表格补充完整;
用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;
根据绘制的频数分布直方图,你能获取哪些信息?至少写出两条不同类型信息