题目内容

【题目】如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE= DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是(
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣

【答案】A
【解析】解:作FG⊥BC于G,
∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;
∴∠BDE=∠FEG,
在△DBE与△EGF中

∴△DBE≌△EGF,
∴EG=DB,FG=BE=x,
∴EG=DB=2BE=2x,
∴GC=y﹣3x,
∵FG⊥BC,AB⊥BC,
∴FG∥AB,
CG:BC=FG:AB,
=
∴y=﹣
故选:A.
作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网