题目内容
【题目】如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在直线y=﹣3上,D、E两点在y轴上.
(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;
(2)求F点到y轴的距离.
【答案】
(1)证明:如图,AH⊥BC于H,CK⊥AB于K.
∴∠DPF=∠AKC=∠CHA=90°,
∵AB=BC,
∴∠BAC=∠BCA,
在△AKC和△CHA中,
,
∴△AKC≌△CHA,
∴KC=HA
(2)作PF⊥DE于E.
∵B、C在y=﹣3上,且点A的坐标为(﹣3,1),
∴AH=4,
∴KC=AH=4,
∵△ABC≌△DEF,
∴∠BAC=∠EDF,AC=DF,
在△AKC和△DPF中,
,
∴△AKC≌△DPF,
∴KC=PF=4.
∴F点到y轴的距离4.
【解析】(1)欲证明KC=HA,只要证明△AKC≌△CHA即可.(2)作PF⊥DE于E,只要证明△AKC≌△DPF即可.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下(其中频率结果保留小数点后三位)
移植总数(n) | 10 | 50 | 270 | 400 | 750 | 1500 | 3500 | 7000 | 9000 |
成活数(m) | 8 | 47 | 235 | 369 | 662 | 1335 | 3203 | 6335 | 8118 |
成活的频率 | 0.800 | 0.940 | 0.870 | 0.923 | 0.883 | 0.890 | 0.915 | 0.905 | 0.902 |
由此可以估计幼树移植成活的概率为 .