题目内容
【题目】兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )
A.11.8 米B.11.75 米
C.12.3 米D.12.25 米
【答案】A
【解析】
在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.
根据题意可构造相似三角形模型如图,
其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;
延长FE交AB于G,则Rt△ABC∽Rt△AGF,
∴AG:GF=AB:BC=物高:影长=1:0.4
∴GF=0.4AG
又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,
∴GF=4.6
∴AG=11.5
∴AB=AG+GB=11.8,即树高为11.8米.
练习册系列答案
相关题目