题目内容
【题目】如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )
A. ∠ABC=90°B. ∠BCD=90°C. AB=CDD. AB∥CD
【答案】C
【解析】
根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.
A、∵∠BAD=90°,BO=DO,
∴OA=OB=OD,
∵∠ABC=90°,
∴AO=OB=OD=OC,
即对角线平分且相等,
∴四边形ABCD为矩形,正确;
B、∵∠BAD=90°,BO=DO,
∴OA=OB=OD,∵∠BCD=90°,
∴AO=OB=OD=OC,
即对角线平分且相等,
∴四边形ABCD为矩形,正确;
C、∵∠BAD=90°,BO=DO,AB=CD,
无法得出△ABO≌△DCO,
故无法得出四边形ABCD是平行四边形,
进而无法得出四边形ABCD是矩形,错误;
D、∵AB||CD,∠BAD=90°,
∴∠ADC=90°,
∵BO=DO,
∴OA=OB=OD,
∴∠DAO=∠ADO,
∴∠BAO=∠ODC,
∵∠AOB=∠DOC,
∴△AOB≌△DOC,
∴AB=CD,
∴四边形ABCD是平行四边形,
∵∠BAD=90°,
∴ABCD是矩形,正确;
故选:C.
练习册系列答案
相关题目