题目内容

【题目】任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是(  )
A.46
B.45
C.44
D.43

【答案】B
【解析】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,
∴m3有m个奇数,
所以,到m3的奇数的个数为:2+3+4+…+m=
∵2n+1=2015,n=1007,
∴奇数2015是从3开始的第1007个奇数,
=966,=1015,
∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,
即m=45.
故选B.
观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网