题目内容
【题目】已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2 .
(1)当P为线段AB的中点时,求d1+d2的值。
(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标。
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值。
【答案】
(1)
解:对于一次函数y=2x﹣4,
令x=0,得到y=﹣4;令y=0,得到x=2,
∴A(2,0),B(0,﹣4),
∵P为AB的中点,
∴P(1,﹣2),
则d1+d2=3
(2)
解:①d1+d2≥2;
②设P(m,2m﹣4),
∴d1+d2=|m|+|2m﹣4|,
当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,
解得:m=1,此时P1(1,﹣2);
当m>2时,d1+d2=m+2m﹣4=3,
解得:m=,此时P2(,);
当m<0时,不存在,
综上,P的坐标为(1,﹣2)或(,)
(3)
解:设P(m,2m﹣4),
∴d1=|2m﹣4|,d2=|m|,
∵P在线段AB上,
∴0≤m≤2,
∴d1=4﹣2m,d2=m,
∵d1+ad2=4,
∴4﹣2m+am=4,即(a﹣2)m=0,
∵有无数个点,
∴a=2.
【解析】(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;
(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2 , 分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;
(3)设P(m,2m﹣4),表示出d1与d2 , 由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2 , 代入d1+ad2=4,根据存在无数个点P求出a的值即可.
练习册系列答案
相关题目