题目内容

【题目】已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2

(1)当P为线段AB的中点时,求d1+d2的值。
(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标。
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值。

【答案】
(1)

解:对于一次函数y=2x﹣4,

令x=0,得到y=﹣4;令y=0,得到x=2,

∴A(2,0),B(0,﹣4),

∵P为AB的中点,

∴P(1,﹣2),

则d1+d2=3


(2)

解:①d1+d2≥2;

②设P(m,2m﹣4),

∴d1+d2=|m|+|2m﹣4|,

当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,

解得:m=1,此时P1(1,﹣2);

当m>2时,d1+d2=m+2m﹣4=3,

解得:m=,此时P2);

当m<0时,不存在,

综上,P的坐标为(1,﹣2)或(


(3)

解:设P(m,2m﹣4),

∴d1=|2m﹣4|,d2=|m|,

∵P在线段AB上,

∴0≤m≤2,

∴d1=4﹣2m,d2=m,

∵d1+ad2=4,

∴4﹣2m+am=4,即(a﹣2)m=0,

∵有无数个点,

∴a=2.


【解析】(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;
(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2 , 分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;
(3)设P(m,2m﹣4),表示出d1与d2 , 由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2 , 代入d1+ad2=4,根据存在无数个点P求出a的值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网