题目内容
【题目】阅读下列材料,并解决相关的问题.
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1 , 依此类推,排在第n位的数称为第n项,记为an .
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.
(1)等比数列3,6,12,…的公比q为 ,第4项是
(2)如果一个数列a1 , a2 , a3 , a4 , …是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代数式表示).
(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.
【答案】
(1)2;24
(2)a1?qn﹣1
(3)
解:∵等比数列的公比q=2,第二项为10,
∴a1==5,a4=a1q3=5×23=40.
【解析】(1)由第二项除以第一项求出公比q的值,确定出第4项即可;
(2)根据题中的定义归纳总结得到通项公式即可;
(3)由公比q与第二项的值求出第一项的值,进而确定出第4项的值.
【考点精析】解答此题的关键在于理解数与式的规律的相关知识,掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律.
练习册系列答案
相关题目