题目内容

【题目】如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.

(1)求证:∠PCA=∠ABC;
(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.

【答案】
(1)

证明:连接OC,

∵PC切⊙O于点C,

∴OC⊥PC,

∴∠PCO=90°,

∴∠PCA+∠OCA=90°,

∵AB为⊙O的直径,

∴∠ACB=90°,

∴∠ABC+∠OAC=90°,

∵OC=OA,

∴∠OCA=∠OAC,

∴∠PCA=∠ABC;


(2)

解:∵AE∥PC,

∴∠PCA=∠CAF,

∵AB⊥CG,

∴∠ACF=∠ABC,

∵∠PCA=∠ABC,

∴∠ACF=∠CAF,

∴CF=AF,

∵CF=5,

∴AF=5,

∵AE∥PC,

∴∠FAD=∠P,

∵sin∠P=

∴sin∠FAD=

在Rt△AFD中,AF=5,sin∠FAD=

∴FD=3,AD=4,∴CD=8,

在Rt△OCD中,设OC=r,

∴r2=(r﹣4)2+82

∴r=10,

∴AB=2r=20,

∵AB为⊙O的直径,

∴∠AEB=90°,在Rt△ABE中,

∵sin∠EAD=,∴

∵AB=20,

∴BE=12.


【解析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;
(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到 , 于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在Rt△AFD中,AF=5,sin∠FAD=,求得FD=3,AD=4,CD=8,在Rt△OCD中,设OC=r,根据勾股定理得到方程r2=(r﹣4)2+82 , 解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在Rt△ABE中,由sin∠EAD=,得到于是求得结论.
本题考查了圆的相关性质,涉及知识点有:切线的性质、垂径定理以及等腰三角形、勾股定理和三角函数值得应用。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网