题目内容
【题目】如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线.
【答案】(1)4(2) PC与☉O相切
【解析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;
(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可,
(1)连接OC,
∵弧CD沿CD翻折后,A与O重合,
∴OM=OA=2,CD⊥OA
∵OC=4,
∴CD=2CM=2=4;
(2)∵PA=OA=4,AM=OM=2,CM=2,PM=PA+AM=6,
又∵CMP=∠OMC=90°
∴PC==4
∵OC=4,PO=8,
∴PC+OC=PO
∴∠PCO=90°
∴PC与☉O相切
练习册系列答案
相关题目
【题目】人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m<5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:
0 | 8 | 2 | 8 | 10 | 13 | 7 | 5 | 7 | 3 |
12 | 10 | 7 | 11 | 3 | 6 | 8 | 14 | 15 | 12 |
(1)样本数据中为甲级的频率为;(直接填空)
(2)求样本中乙级数据的中位数和众数.
(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.