题目内容

【题目】如图,已知O的半径为4,OA为半径,CD为弦,OACD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OAP,使AP=OA,连接PC.

(1)求CD的长;

(2)求证:PCO的切线.

【答案】(1)4(2) PC☉O相切

【解析】(1)连接OC,根据翻折的性质求出OM,CDOA,再利用勾股定理列式求解即可;

(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可,

(1)连接OC,

∵弧CD沿CD翻折后,AO重合

OM=OA=2,CDOA

OC=4,

CD=2CM=2=4

(2)PA=OA=4,AM=OM=2,CM=2,PM=PA+AM=6,

又∵CMP=OMC=90°

PC==4

OC=4,PO=8,

PC+OC=PO

∴∠PCO=90°

PC与☉O相切

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网