题目内容
【题目】如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数
【答案】25°
【解析】
先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.
解:∵四边形OABC为正方形,
∴OA=OC,∠AOC=90°,
∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴OC=OF,∠COF=40°,
∴OA=OF,
∴∠OAF=∠OFA,
∵∠AOF=∠AOC+∠COF=90°+40°=130°,
∴∠OFA=(180°-130°)=25°.
故答案为25°.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+b的图象与直线y=x+2相交于点A(1,m),点B(n,0).
(1)求二次函数的解析式,并写出该拋物线的对称轴和顶点坐标;
(2)选取适当的数据填入下表,并在图中的直角坐标系内描点画出该抛物线的图象;
x | …… |
|
|
|
|
| …… |
y | …… |
|
|
|
|
| …… |
(3)画出这两个函数的图象,并结合图象直接写出ax2+b>x+2时x的取值范围.