题目内容
【题目】如图1,点O在直线AB上,∠AOC=30°,将一直角三角板的直角边OM与OA重合,ON在∠COB内部.现将三角板绕O沿顺时针方向以每秒2°的速度旋转,当ON与OB重合时停止转动.设运动时间为t(s).
(1)若直角边ON将∠COB分成∠CON:∠BON=3:2,求t的值;
(2)如图2,OG为三角板MON内部的射线,在旋转的过程中,OG始终平分∠MOB,请问∠AOM与∠NOG是否存在一定的数量关系?若存在,求出改数量关系;若不存在,请说明理由.
【答案】(1)15;(2)∠AOM=2∠NOG,理由见解析.
【解析】
(1)根据补角的定义可得∠COB=150°,根据角平分线的定义可得∠CON=100°,所以∠AOM=30°,据此即可求出t的值;
(2)令∠NOG为β,∠AOM为γ,∠MOG=90°﹣β,根据∠AOM+∠MOG+∠BOG=180°即可得到∠AOM与∠NOG满足的数量关系.
(1)根据题意得∠COB=180°﹣∠AOC=180°﹣30°=150°,
∴当∠CON=∠COB=100°时,直角边ON将∠COB分成∠CON:∠BON=3:2,
∴∠AOM=30°,
∴2t=30,
解得t=15;
(2)∠AOM=2∠NOG,
令∠NOG为β,∠AOM为γ,∠MOG=90°﹣β,
∵∠AOM+∠MOG+∠BOG=180°,
∴γ+90°﹣β+90°﹣β=180°,
∴γ﹣2β=0,即γ=2β,
∴∠AOM=2∠NOG.
练习册系列答案
相关题目