题目内容

【题目】如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.
(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).

【答案】
(1)证明:∵四边形ABCD是菱形,

∴AD=AB,∠ABD=∠CBD= ∠ABC,AD∥BC,

∵∠A=60°,

∴△ABD是等边三角形,∠ABC=120°,

∴AD=BD,∠CBD=∠A=60°,

∵AP=BQ,

∴△BDQ≌△ADP(SAS)


(2)解:过点Q作QE⊥AB,交AB的延长线于E,

∵BQ=AP=2,

∵AD∥BC,

∴∠QBE=60°,

∴QE=QBsin60°=2× = ,BE=QBcos60°=2× =1,

∵AB=AD=3,

∴PB=AB﹣AP=3﹣2=1,

∴PE=PB+BE=2,

∴在Rt△PQE中,PQ= =

∴cos∠BPQ= = =


【解析】(1)由四边形ABCD是菱形,可证得AD=AB,∠ABD=∠CBD= ∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可证得△BDQ≌△ADP;(2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长,则可求得cos∠BPQ的值.
【考点精析】关于本题考查的菱形的性质和解直角三角形,需要了解菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网