题目内容
【题目】为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地要走多少千米?
(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
【答案】(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BCsin30°=80×=40(千米),
AC=(千米),
AC+BC=80+(千米),
答:开通隧道前,汽车从A地到B地要走(80+)千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BCcos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
答:汽车从A地到B地比原来少走的路程为 [40+40]千米.
练习册系列答案
相关题目