题目内容
【题目】有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是( )
A. B. C. D.
【答案】B
【解析】
令根的判别式△>0可求出使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根的a的值,利用二次函数图象上点的坐标特征求出当二次函数y=x2﹣(a2+1)x﹣a+2的图象经过点(1,0)时a的值,进而可得出“使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)”的a的值,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.
令△=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0,
解得:a>﹣1,
∴使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根的数有0,1,2,3.
当二次函数y=x2﹣(a2+1)x﹣a+2的图象经过点(1,0)时,1﹣(a2+1)﹣a+2=0,
解得:a1=﹣2,a2=1,
∴使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的数字为0,2,3,
∴该事件的概率为,
故选B.
练习册系列答案
相关题目