题目内容
【题目】已知,在△ABC中,AB=AC,在射线AB上截取线段BD,在射线CA上截取线段CE,连结DE,DE所在直线交直线BC于点M.
猜想:当点D在边AB的延长线上,点E在边AC上时,过点E作EF∥AB交BC于点F,如图①.若BD=CE,则线段DM、EM的大小关系为 .
探究:当点D在边AB的延长线上,点E在边CA的延长线上时,如图②.若BD=CE,判断线段DM、EM的大小关系,并加以证明.
拓展:当点D在边AB上(点D不与A、B重合),点E在边CA的延长线上时,如图③.若BD=1,CE=4,DM=0.7,求EM的长.
【答案】猜想:DM=EM;探究:DM=EM,证明详见解析;拓展:EM=2.8.
【解析】
(1)如图1中,作EF∥AB交BC于F,只要证明△BDM≌△FEM即可.
(2)如图2中,作EF∥AB交CB的延长线于F,只要证明△BDM≌△FEM即可.
(3)如图3中,作EF∥AB交CB的延长线于F,由BD∥EF得,再证明EF=EC即可.
(1)如图1中,猜想:DM=EM.
理由:作EF∥AB交BC于F,
∵AB=AC,
∴∠ABC=∠C,
∵EF∥AD,
∴∠EFC=∠ABC,
∴∠C=∠EFC,
∴EF=EC,
∵BD=EC,
∴DB=EF,
∵EF∥AB,
∴∠D=∠MEF,
在△BDM和△FEM中,
,
∴△BDM≌△FEM,
∴DM=EM.
故答案为DM=EM.
(2)结论DM=EM.
理由:如图2中,作EF∥AB交CB的延长线于F,
∵AB=AC,
∴∠ABC=∠C,
∵EF∥AB,
∴∠EFC=∠ABC,
∴∠C=∠EFC,
∴EF=EC,
∵BD=EC,
∴DB=EF,
∵EF∥AB,
∴∠D=∠MEF,
在△BDM和△FEM中,
,
∴△BDM≌△FEM,
∴DM=EM.
(3)如图3中,作EF∥AB交CB的延长线于F,
∵EF∥AB,
∴∠F=∠ABC,
∵AB=AC,
∴∠ABC=∠C,
∴∠F=∠C,
∴EF=CE=4,
∵BD∥EF,
∴,
∴,
∴EM=2.8,
故答案为2.8.
【题目】某校的一个社会实践小组对本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 | 非常了解 | 比较了解 | 基本了解 | 不太了解 |
频数 | 20 | 35 | 41 | 4 |
(1)请根据调查结果,若该校有学生人,请估计这些学生中“比较了解”垃圾分类知识的人数.
(2)在“比较了解”的调查结果里,其中九(1)班学生共有人,其中名男生和名女生,在这人中,打算随机选出位进行采访,求出所选两位同学恰好是1名男生和1名女生的概率.(要求列表或画树状图)
【题目】为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表。
组别 | 分数段 | 频次 | 频率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
请根据所给信息,解答以下问题:
(1)表中a=___,b=___;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率。
【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.
月信息消费额分组统计表
组别 | 消费额(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
请结合图表中相关数据解答下列问题:
(1)这次接受调查的有 户;
(2)在扇形统计图中,“E”所对应的圆心角的度数是 ;
(3)请你补全频数直方图;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?