题目内容
【题目】如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.
(1)求证:;
(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
【答案】 (1) 证明见解析;(2) 证明见解析.
【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MFMB;
(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MFMB.
(2)设FM=a,则BF=3a,BM=4a.
由MD2=MFMB,得:MD2=a4a,∴MD=2a,∴DF=BF=3a.
∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.
【题目】某食品厂从生产的袋装食品中抽出样品20袋,以每袋标准质量45克为标准,检测每袋的质量是否符合该标准,超过或不足的克数分别用正、负数来表示,记录如下:
与标准质量的差值(单位:克) | ﹣5 | ﹣3 | 0 | 1 | 2 | 5 |
袋数 | 1 | 3 | 6 | 4 | 5 | 1 |
回答下列问题:
(1)这20袋样品中,完全符合每袋标准质量45克的有 袋;
(2)这批样品的总质量是多少克?(要求写出算式).