题目内容
【题目】如图,边长为2的正方形ABCD中,点E、F分别在AD、AB上(点E不与点D重合),DE=AF,DF、CE交于点G,则AG的取值范围是( )
A.B.
C.D.
【答案】D
【解析】
通过证明△DEC≌△AFD得出∠DGE=90°,可知△DGC是直角三角形,则G点运动轨迹是以DC为直径的圆上,设圆的圆心为O,当A、G、O三点共线时,AG最短.由点E不与点D重合可得AG<2.
解:∵AD=DC,∠EDC=∠FAD,DE=AF,
∴△DEC≌△AFD(SAS).
∴∠DCE=ADF.
∵∠DCE+∠DEC=90°,
∴∠ADF+∠DEC=90°,即∠DGE=90°=∠DGC.
所以点G运动的轨迹在以DC为直径的圆上的一段弧,圆心在DC中点O处.
当A、G、O三点共线时,AG最短,如图所示.
此时AO===,OG=DC=1,
所以AG=AO-OG=-1.
因为点E不与点D重合,所以AG<2.
所以-1≤AG<2.
故选:D.
练习册系列答案
相关题目