ÌâÄ¿ÄÚÈÝ
ÒÑÖª£ºÅ×ÎïÏßy1=£2x2£«2ÓëÖ±Ïßy2=2x+2Ïཻ
µãAºÍµãB£¬
£¨1£©Çó³öµãAºÍµãBµÄ×ø±ê¡£
£¨2£©¹Û²ìͼÏó£¬ÇëÖ±½Óд³öy1£¾y2µÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¡£
£¨3£©µ±xÈÎȡһֵʱ,x¶ÔÓ¦µÄº¯ÊýÖµ·Ö±ðΪy1¡¢y2.Èôy1¡Ùy2£¬
È¡y1¡¢y2ÖеĽÏСֵ¼ÇΪM£»Èôy1=y2£¬¼ÇM= y1=y2.£¨ÀýÈ磺µ±x=1ʱ£¬y1=0,y2=4,y1£¼y2£¬´ËʱM=0.£© Çó£ºÊ¹µÃM=1µÄxÖµ¡££½¡¿
µãAºÍµãB£¬
£¨1£©Çó³öµãAºÍµãBµÄ×ø±ê¡£
£¨2£©¹Û²ìͼÏó£¬ÇëÖ±½Óд³öy1£¾y2µÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§¡£
£¨3£©µ±xÈÎȡһֵʱ,x¶ÔÓ¦µÄº¯ÊýÖµ·Ö±ðΪy1¡¢y2.Èôy1¡Ùy2£¬
È¡y1¡¢y2ÖеĽÏСֵ¼ÇΪM£»Èôy1=y2£¬¼ÇM= y1=y2.£¨ÀýÈ磺µ±x=1ʱ£¬y1=0,y2=4,y1£¼y2£¬´ËʱM=0.£© Çó£ºÊ¹µÃM=1µÄxÖµ¡££½¡¿
£¨1£©A£¨-1,0£©B£¨0,2£©£¨2£©-1<x<0£¨3£©1
ÊÔÌâ·ÖÎö£º£¨1£©ÓÉÌâÒâ·ÖÎö£¬Á½Ïཻ£¬ÔòÓУº
£2x2£«2 =2x+2
ËùÒÔx=0£¬x=-1
¹ÊA£¨-1,0£©B£¨0,2£©
£¨2£©Í¨¹ýͼÏñ·ÖÎö¿ÉµÃ£ºµ±-1<x<0ʱÂú×ãÌõ¼þ
£¨3£©ÓÉÌâÒâ¿ÉÖª£¬µ±È¡Öµ×îСʱ£¬´ËÀàÌõ¼þÔÚM=1ʱ£¬£¬´ËʱͼÐεķÖÎöÖÐ
µ±Á½·½³ÌʽÏàµÈʱx=0£¬x=-1
¹ÊÂú×ãÌõ¼þ
µãÆÀ£ºÔÚ½âÌâʱҪÄÜÁéÔËÓöþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊÇó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£¬ÀûÓÃÊýÐνáºÏ˼Ïë½âÌâÊDZ¾ÌâµÄ¹Ø¼ü£®,
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿