题目内容
【题目】某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程 ,其中 , ,据此模型预测广告费用为9万元时,销售轿车台数为( )
广告费用x(万元) | 2 | 3 | 4 | 5 | 6 |
销售轿车y(台数) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20
【答案】C
【解析】解:根据表中数据,计算 = ×(2+3+4+5+6)=4,
= ×(3+4+6+10+12)=7,
且回归直线方程为 =2.4x+ ,
∴ =7﹣2.4×4=﹣2.6,
∴回归方程为 =2.4x﹣2.6;
当x=9时, =2.4×9﹣2.6=19,
即据此模型预测广告费用为9万元时,销售轿车台数为19.
故选:C.
根据表中数据计算 、 ,由回归直线方程过样本中心点求出 的值,写出回归方程,利用回归方程计算x=9时 的值即可.
练习册系列答案
相关题目
【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
x(个) | 2 | 3 | 4 | 5 | 6 |
y(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y= ;
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y﹣0.05x2﹣1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式: = x+a, = = ,a= ﹣ .