题目内容
【题目】甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条统计图所示.则甲、乙、丙三人的训练成绩方差S甲2 , S乙2 , S丙2的大小关系是 .
【答案】S丙2<S甲2<S乙2
【解析】解:∵方差是表示数据离散程度的量,且数据越集中,方差越小, 由条形图得到乙图最集中,丙图最分散,
∴甲、乙、丙三人的训练成绩方差S甲2 , S乙2 , S丙2的大小关系是S丙2<S甲2<S乙2 .
所以答案是:S丙2<S甲2<S乙2 .
【考点精析】认真审题,首先需要了解频率分布直方图(频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息),还要掌握极差、方差与标准差(标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差)的相关知识才是答题的关键.
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
【题目】某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程 ,其中 , ,据此模型预测广告费用为9万元时,销售轿车台数为( )
广告费用x(万元) | 2 | 3 | 4 | 5 | 6 |
销售轿车y(台数) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20