题目内容
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E。 连接AD、DE,若CF=2,AF=3。给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4 其中正确的是( )
A.①②④B.①②③C.②③④D.①③④
【答案】A
【解析】
①利用垂径定理可知,然后得到∠ADF=∠AED,结合公共角可证明△ADF∽△AED;②结合CF=2,且,可求得DF=6,且CG=DG,可求得FG=2;③在Rt△AGF中可求得AG,在Rt△AGD中可求得tan∠ADG=,由∠E=∠ADG,可得tan∠E;④可先求得△ADF与△AED的相似比,再求S△ADF,进而求出S△ADE,然后由S△DEF=S△AED-S△ADF得出结果.
解:①∵AB为直径,AB⊥CD,
∴,
∴∠ADF=∠AED,且∠FAD=∠DAE,
∴△ADF∽△AED,故①正确;
②∵AB为直径,AB⊥CD,
∴CG=DG,
∵,且CF=2,
∴FD=6,
∴CD=8,
∴CG=4,
∴FG=CGCF=42=2,故②正确;
③在Rt△AGF中,AF=3,FG=2,
∴AG=,
∴tan∠ADG=,
∵∠E=∠ADG,
∴tan∠E=,故③错误;
④在Rt△ADG中,AG=,DG=4,
∴AD=,
∴,
∴,
∵,
∴S△AED=,
∴S△DEF=S△AED-S△ADF=-=,故④错误;
故选:A.
【题目】为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程 | 人数 | 所占百分比 |
声乐 | 14 | |
舞蹈 | 8 | |
书法 | 16 | |
摄影 | ||
合计 |
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.