题目内容
【题目】如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A. 主视图不变,左视图不变
B. 左视图改变,俯视图改变
C. 主视图改变,俯视图改变
D. 俯视图不变,左视图改变
【答案】A
【解析】
分别得到将正方体①移走前后的三视图,依此即可作出判断.
将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。
将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。
将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。
故选A.
【题目】小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:
x(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);
(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.
【题目】如图,Rt△ABC中,∠C = 90°, P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q . 已知AC = 3cm,BC = 6cm,设PC的长度为xcm,BQ的长度为ycm .
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x ,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y > 2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?(直接写结果)
【题目】绿色无公害蔬菜基地有甲、乙两种植户,他们种植了两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
种植户 | 种植类蔬菜面积(单位:亩) | 种植类蔬菜面积(单位:亩) | 总收入(单位:元) |
甲 | |||
乙 |
说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位
求两类蔬菜每亩的平均收入各是多少元?
某种植户准备租亩地用来种植两类蔬菜,为了使总收入不低于元且种植类蔬菜的面积多于种植类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案;
在的基础上,指出哪种方案使总收入最大,并求出最大值.
【题目】北京世界园艺博览会(以下简称“世园会”)于2019年4月29日至10月7日在北京市延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的游玩路线,如下表:
A | B | C | D |
漫步世园会 | 爱家乡,爱园艺 | 清新园艺之旅 | 车览之旅 |
小美和小红都计划去世园会游玩,她们各自在这4条路线中任意选择一条,每条线路被选择的可能性相同.
(1)求小美选择路线“清新园艺之旅”的概率是多少?
(2)用画树状图或列表的方法,求小美和小红恰好选择同一条路线的概率.