题目内容
【题目】如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.
(1)求DE是⊙O的切线;
(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;
(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)连接OD,由圆周角定理就可得∠ADB=90°和∠CDB=90°,又由E为BC的中点可以得出DE=BE,进一步得到∠EDO=∠EBO,由等式的性质就可以得出∠ODE=90°即可证明;
(2)由S2=5S1,即△ADB的面积是△CDE面积的4倍,可得AD:CD=2:1,AD:BD=2,则可求tan∠BAC;
(3)由(2)的关系即可知AD:BD=2,在Rt△AEB中,运用勾股定理解答即可.
(1)证明:连接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直径,
∴∠ADB=90°,
∴∠CDB=90°.
∵E为BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB为直径的⊙O的切线,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切线;
(2)解:∵S2=5S1,
∴S△ADB=2S△CDB,
∴=,
∵△BDC∽△ADB,
∴=,
∴DB2=ADDC,
∴ ,
∴tan∠BAC=;
(3)解:∵tan∠BAC=,
∴,得BC=AB=2 ,
∵E为BC的中点,
∴BE=BC=,
∴AE=.
练习册系列答案
相关题目