题目内容
【题目】如图所示,在等边三角形中,,射线,点从点出发沿射线以的速度运动,同时点从点出发沿射线以的速度运动,设运动时间为.
(1)填空:当为 时,是直角三角形;
(2)连接,当经过边的中点时,四边形是否是特殊四边形?请证明你的结论.
(3)当为何值时,的面积是的面积的倍.
【答案】(1)或;(2)是平行四边形,见解析;(3)或.
【解析】
(1)根据题意可分两种情况讨论:①当时,因为是等边三角形,所以时满足条件;②当时,因为是等边三角形,所以,得到,故,即可得到答案;
(2)判断出得出,即可得出结论;
(3)先判断出和的边和上的高相等,进而判断出,再分两种情况,建立方程求解即可得出结论.
解:(1)①当时,
是等边三角形,,
,
从点出发沿射线以的速度运动,
当时,是直角三角形;
②当时,
是等边三角形,,
, ,
,
,
从点出发沿射线以的速度运动,
当时,是直角三角形;
故答案为:或;
(2)是平行四边形.
理由:如图,
,
,
经过边的中点,
,
,
,
四边形是平行四边形;
(3)设平行线与的距离为,
边上的高为,的边上的高为,
的面积是的面积的倍,
,
当点在线段上时,,
,
;
当点在的延长线上时,
,
,
即:秒或秒时,的面积是的面积的倍,
故答案为:或.
练习册系列答案
相关题目