题目内容
【题目】如图,△ABC是等边三角形,AC=6,以点A为圆心,AB长为半径画弧DE,若∠1=∠2,则弧DE的长为( )
A.1π
B.1.5π
C.2π
D.3π
【答案】C
【解析】解答: ∵△ABC是等边三角形,AC=6,
∴AB=AC=6,∠CAB=60°.
∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
∴∠CAB=∠DAE=60°,
∴弧DE的长为 =2π,
故选C.
先由等边三角形的性质得出AB=AC=6,∠CAB=60°.再由∠1=∠2得到∠CAB=∠DAE=60°,然后根据弧长公式解答即可.
【考点精析】关于本题考查的等边三角形的性质和弧长计算公式,需要了解等边三角形的三个角都相等并且每个角都是60°;若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的才能得出正确答案.
练习册系列答案
相关题目